
JOURNAL OF SOLID STATE CHEMISTRY 99, 243-251 (1992) 

Systematics of the Lattice Constants in the Homologous 
Compounds, (RMO,) UW’O),, by the “Extended Vegard’s Law” 

KIITL SIRATORI” 

Department of Physics, Faculty of Science, Osaka University, Toyonaka, 
Osaka, Japan,? and Institute of Physics, Polish Academy of Sciences, 
Warszawa, Poland 

AND NOBORU KIMIZUKA 

National Institute for Research in Inorganic Materials, Namiki, Tsukuba, 
Ibaraki, Japan 

Received June 20, 1991; in revised form October 18, 1991; accepted January 28, 1992 

Lattice constants of the homologous compounds, (RM03) (M’O), [R: SC, In, Y, or rare-earth element 
between Ho and Lu; M: Fe, Ga or Al; M’: Mg, Mn, Fe, Co, Cu, or Zn] are analyzed on an assumption 
that the coordination polyhedra of all cations couple elastically to make up the periodic lattice of the 
crystal at the lowest energy state. This is a natural extension of Vegard’s law, which can be considered 
as an extreme case of the present model where the “elastic” constant of the coordination polyhedra 
is identical, irrespective of the cation. A wide range of compounds is covered by the analysis. “Elastic” 
constants and the proper dimension of each coordination polyhedron are estimated. An anomaly 
disclosed on RFe204 is attributed to the charge fluctuation between Fe*+ and Fe3+. o 1992 Academic 

Press. Inc. 

1. Introduction and the state of the lowest “elastic” energy 
is realized. Parameters to be determined are 

Quantitative explanation of the depen- the “proper” dimensions and the “elastic 
dence of the lattice dimensions on the con- constants” of polyhedra. The former is the 
stituent elements is one of the important dimensions of the polyhedron in a hypothet- 
aims of crystal chemistry. In the present ical crystal which is composed of that coor- 
paper, we show that the lattice constants dination polyhedron only, and the latter is 
of almost all the compounds belonging to a the coefficient of the energy increase pro- 
family of oxides, (RMO) (M’O),, can be portional to the square of the deformation 
analyzed successfully by a simple model. of the polyhedron from the “proper” value. 
By the model, coordination polyhedra of all A family of oxides (RMO,), (M’O), crys- 
the cations are assumed to couple elastically tallizes in a hexagonal layered structure (I). 

Here, R stands for SC, In, Y, or a rare-earth 
* Visiting research officer of the N.I.R.I.M.; to element from Ho to Lu, and M, and M’ 

whom correspondence should be addressed. stand for 3 + Al, Fe, or Ga, and Mg or 2 + 
t Permanent address. transition-metal ions from Mn to Zn except 
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FIG. 1. Crystal structure of RMM’O,. Double circles 
are for R, soiid circles are for M or M’, and open circles 
are for 0. 

Ni, respectively, where m or II is an integer. 
The crystal structure of the end member of 
this series for n --, 03 is the hexagonal YAlO, 
type, that was reported by Bertaut and 
Mareschal in 1963 (2). The structure of the 
other end member for m + w is wtirtzite 
type. In the following, the notation of (n, m) 
compound is used. The crystal structure of 
the (1, 1) compound, center of this series, 
is shown in Fig. 1, as an example. In this 
structure, each element, R, M and M’ or 0, 
makes up planar triangular nets in the c 
plane and the nets stack along the c axis. 
No evidence has been found so far for any 
preferential location of M and M’, except 
the isolated layer of M + 0 (named T in the 
figure) which appears in the case of n > 1 
(see Fig. 2). 

By stacking triangular lattices, three 
kinds of lattices can be distinguished ac- 
cording to the position of atoms. These three 
will be assigned as A, B, and C, as usual 
(see the upper part of Fig. 1). The crystal 

structure of all the members of this series 
of compounds can be constructed by the 
following terms: 

1” R is coordinated by six oxygen ions 
octahedrally. Thus, the stacking is, for ex- 
ample, C(O)-A(R)-B(0). This block of 
three layers of atoms is denoted U in the 
figure. 

2” A layer of M and M’ and that of oxygen 
lie in nearly the same plane. These layers, 
B(M, M’)-A(O), for example, are a charac- 
teristic of this family and are named T. 

3” U and T stack along the c axis to make 
the anion and cation net nearest, i.e., 
A(R)-A(O), B(O)-B(M, M’), etc. The oxy- 
gen layer A in the former example is of the 
T layer next to the U block, and that B in 
the latter is of the U block or of the neigh- 
boring T. (See the left-hand side of Fig. 1.) 
This condition is easily understood as due 
to the interlayer Coulomb energy. 

By the two conditions above, M and M’ 
ions are coordinated by five O*- ions form- 
ing a trigonal bipyramid. 

Some examples of the crystal thus con- 
structed are shown in Fig. 2. The symmetry 
of the crystal is P6,lmmc when n + m is 
odd and R7m when 12 + m is even. In the 
latter case, the crystal is rhombohedral but, 
for convenience, the hexagonal frame is 
used in this paper. Note that the dimension 
of the triangular net, A, B, or C, is just the 
lattice constant a of the crystal. 

Such a simple way of crystallization being 
considered, it is not surprising that the lat- 
tice constants, a and c, change systemati- 
cally according to the constituent elements. 
In the case of R Fe,O,, for example, the crys- 
tal shrinks along the a axis almost linearly 
with increasing atomic number of R, from 
Ho to Lu, whereas c increases. (See Figs. 3 
and 7 below.) Qualitatively, this has been 
considered to be due to the change of the 
ionic radii of rare-earth ions: the size of the 
coordination octahedron of R in the U block 
is larger along the a axis when the ionic 
radius of R3+ is large. In reality, however, 
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FIG. 2. Stacking of the triangular nets of R, (M, M’), 
and 0 along the c axis in the homologous compounds 
(RMO,),W’O),. 

M and M’ also affect the lattice constants. 
It can be considered that the oxygen nets, 
octahedra in U and triangles in T, have their 
proper dimension according to the cations 
at the center and interact to make up the 
whole crystal at the lowest energy state. 

The purpose of this paper is to show that 
the lattice constant a of this series of com- 
pounds can be analyzed (semi-)quantita- 
tively by an elastic model: 

(i) Each U block (RO,) and T layer ((M, 
M’)O) is assumed “elastic,” i.e., energy of 
them is proportional to the square of their 
deformation from the proper dimension. 

(ii) The lattice constant a is determined to 
make the total “elastic” energy of the lattice 
minimum. 

This is a natural extension of the Vegard’s 
law, where the elastic constant of each coor- 
dination polyhedron is assumed identical for 
all the atoms and only the proper dimension 
of each polyhedron is considered different: 

lattice constants of the mixed crystal are 
given by the weighted mean of the dimen- 
sion of the coordination polyhedra of con- 
stituent elements. 

In the present treatment, there are two 
parameters, proper dimension and “elas- 
tic” constant, for each coordination polyhe- 
dron of cations, R, M or M’ . Taking into 
account the above-mentioned dependence 
of the lattice constant on the atomic number 
of R, we add an assumption, to minimize the 
number of parameters. That is: 

(iii) The rigid-sphere approximation can 
be adopted to the coordination octahedron 
of the rare-earth element, R, and the “elas- 
tic” constant can be assumed identical for 
all R. Validity of the rigid-sphere approxi- 
mation is discussed in Section 4. This as- 
sumption (iii) is not sufficient to determine 
a(R), the proper dimension of the coordina- 
tion octahedron of R. We add the following 
assumption: 

(iv) In the free U block, oxygen ions in 
the upper and the lower layers contact with 
each other. 

Though not for all of the compounds, the 
“elastic” or extended Vegard’s model was 
found valid for a wide range of compounds 
and the proper dimension of the coordina- 
tion triangle of each set of transition ele- 
ments, a(M, M’), and the “elastic” con- 
stant, K(M, M’), were determined. On the 
above assumptions, analysis can be ex- 
tended to u(M, M’) and K(M, M’) to ex- 
press them as linear combinations of a and 
K of each transition element, respectively. 
Then, we can compare the data of the com- 
pounds with different m or II. It was dis- 
closed that the proper dimension of the oxy- 
gen triangle coordinating Zn coincides with 
the lattice constant a of wurtzite. 

Another lattice constant, c, is considered 
subsequently. The dimension of the U block 
along the c axis, c(U), can be estimated by 
assumption (iii) and the experimentally de- 
termined a. Then, the dimension along the 
c axis of the double T layers in the (1, 1) 



compound, for example, can be deduced 
from the observed lattice constant c (See 
Fig. 1). One-third of this quantity is the aver- 
age distance between the oxygen nets out 
of a U block and is denoted as c(T). It is 
disclosed that almost all c(T) of (1, 1) com- 
pounds is expressed by a universal linear 
function of a/u(M, M’), provided that c(T) 
are normalized by a factor dependent on M 
and M’. In the case of M’ = Zn, only for 
which compounds with m > 1 have been 
synthesized systematically, c(T) increases 
with increasing m and tends to 2.603 A for 
m --, ~0, just one-half of the lattice constant 
c of wiirtzite. 

In the following, the lattice constants of 
the (1, m) compounds at room temperature, 
accumulated in Table 26 of Ref. (I), are 
used. The analysis of a is carried out and 
the parameters are determined in the next 
section. The relation between the lattice 
constants c and a is considered in Section 3 
and the results are discussed and assump- 
tions and procedures reexamined in Section 
4. Compounds of rz > 1 will not be treated 
since the available experimental data are not 
enough at present. 

2. Analysis of a 

The basis of the present analysis is the 
following equation: 

E = n{K(R) (a(R) - u)~ 

+ K(M) (a(M) - d2) 
+ mK(M’) (u(M’) - a)*. (1) 

Here, E is the energy of the compound 
(RMO), (M’O),, a is the lattice constant of 
the crystal along the a axis, u(R) and K(R), 
etc., are the proper dimension and the “elas- 
tic” constant, respectively, of the coordina- 
tion polyhedron of R, etc. By the minimiza- 
tion of this energy, a is given as 

According to assumption (iii) in the last 
section, the atomic distance of R and the 
coordinating 0, r(R-0), is equal to the sum 
of the ionic radii of R3+ and 02-: 

r(R-0) = vu2/3 + c(U)~/~ 
= r(R) + r(0). (3) 

Here, c(U) is the dimension of the U block 
along the c axis and r(R) and r(0) are the 
ionic radii of R3+ and 02-, respectively. In 
the following, we use the value given by 
Shannon and Prewitt (3) for rare earths, 
based on the oxygen radius of 1.40 A; r(In3+) 
was assumed to be 0.792 A. As for the Sc- 
compounds, experimentally determined lat- 
tice constants correspond to r = 0.76-0.77 
A, much larger value than the Shannon- 
Prewitt radius (0.73 A). 

To determine u(R), assumption (iv) is 
necessary. That is, 

r-(0-0; U) = d1(R)~/3 + c(U)~ 
= 2 r(0). (4) 

Then, u(R) is given from Eqs. (3) and (4) as 

u(R) = 22/r(R) (r(R) + 2r(O)). (5) 

The values of u(R) are tabulated for In, Lu, 
Yb, Tm, Er, Y, and Ho in Table I with their 
ionic radii. 

The lattice constants of many (1, 1) com- 
pounds with different R, M, and M’ have 
been reported and were tabulated in Ref. (I, 
Table 26). a of the compounds with the same 
M and M’ increases almost linearly with 
increasing ionic radius of R. According to 
Eq. (2), they can be expressed as 

u = K(R)u(R) + K(M, M’)u(M, M’) 
K(R) + K(M, M’) ’ 

(6) 
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u= 
n(K(R)u(R) + K(M)u(M)) + mK(M’)u(M’) 

n(K(R) + K(M)) + mK(M’) . (2) 
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TABLE I 

THE LATTICE CONSTANT a OF THE FREE U BLOCK ESTIMATED ON THE RIGID-SPHERE APPROXIMATION, 
a(R), AND THE IONIC RADIP r(R), OF RARE-EARTH ELEMENTS AND In (A) 

R In LU Yb Tm Er Y Ho 

r(R) 0.792 0.848 0.858 0.869 0.881 0.892 0.894 
a(R) 3.373 3.518 3.543 3.571 3.602 3.630 3.635 

a These are the values given by Shannon and Prewitt (3) on the basis of r(0) = 1.40 A. The values revised by 
them (4) were not used, since the agreement between the calculated and the experimental results seems worse. 
For In, they gave 0.790 A. 

Here, calculation using these parameter values are 

K(M, M’) = K(M) + K(M’), (7) 
compared with the experiments in Figs. 3 
and 4 for the case of M = Fe and M = Ga, 

a(M 
, 

M’) = wm4~) + aw4w 
K(M) + K(W) . 

(8) 

By the use of the experimentally determined 
lattice constants and a(R) given in Table I, 
parameters in Eq. (6), a(M, M’) and K(M, 
M’)IK(R), are estimated by the least- 
square’s fit and are tabulated in Table II. 
Only the ratio of the “elastic” constants can 
be determined, of course. The results of the 

respectively. Agreement seems satisfac- 
tory, except several cases for the In com- 
pound. The case of Fe-Mg, which is omitted 
in Fig. 3, is discussed in Section 4.1. (See 
Table VII.) As for the Al-compound, this 
process was inapplicable, since only a few 
compounds have been synthesized. 

According to Eq. (7), the difference be- 
tween K(Fe, M’) and K(Ga, M’) should be 
a constant if the “elastic model” is valid. 
Table II shows that this is approximately 

TABLE II 

K(M, M')IK(R) AND a(M, M’) FOR THE (1, 1) COMPOUNDS AND THE DIFFERENCE BETWEEN 
Fe AND Ga COMPOUNDS 

Fe 

K(M, M')IK(R) Of, W (A) 

Ga (Fe-Ga) Fe Ga (Fe-Ga) 

Mg 0.767 3.214 
(0.865) (0.767) (3.274) (3.214) 

Mn 1.267 0.828 0.439 3.388 3.318 0.070 

Fe 0.428 0.487 - 0.059 3.248 3.250 -0.002 
(0.585) (0.487) (3.332) (3.250) 

co 0.549 0.447 0.102 3.243 3.137 0.105 
(0.546) (0.448) (3.244) (3.136) 

cu 0.600 0.538 0.062 3.376 3.305 0.071 
(0.617) (0.519) (3.375) (3.306) 

Zn 0.583 0.475 0.108 3.242 3.141 0.101 
(0.579) (0.481) (3.242) (3.141) 

’ Values in parentheses are calculated from Table IV. See the end of this section. 
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FIG, 3. The lattice constant a of RFeM’04, as a 
function of the Shannon-Prewitt radii of R3+. Points 
are the experimental data (I) and fine lines are calcu- 
lated by Eq. (6) and parameters in Table II. Values for 
Mn, Cu, and Zn compounds are shifted vertically by 
the amount indicated in parentheses in the figure, to 
avoid confusion. Points for M’ = Fe between In and 
Lu are for In0,sLu,,,Fe201 and In0,5Lu,,5Fe20,, respec- 
tively, and a point at r(R) = 0.900 is for Y,,,Dy,,,FerO+ 

verified for M’ = Co, Cu, or Zn, but is not 
for M’ = Mn and Fe. 

Similar analysis can be adopted to the se- 
ries of changing m with fixed M’, which has 
been synthesized systematically only for 
Zn. Then, 

a = KtR, M)a(R, Ml + mK(M’)atM’) 
K(R, M) + mK(M’) ’ 

(9) 

Expressions for K(R, M) and a(R, M) are 
the same with Eqs. (7) and (8) with the sub- 
stitution of M’ by R. In this case, however, 
experimental data show that Eq. (9) is valid 
only in a restricted range of m; i.e., the linear 
approximation of Eq. (1) is not good for the 

total series. We consider the compounds of 
smaller m, because parameters in this range 
can be compared with those of (1, 1) com- 
pounds. Determined parameter values are 
tabulated in Table III, and the calculated 
values are compared with the experiments 
in Figs. 5 and 6. As is shown, experimental 
data are smaller than the calculated values in 
the large m region of Tm or Yb compounds. 

In the analysis shown in the figures, 
a(Zn), the limiting value of a form ---, CD, was 
fixed as 3.250 A, the value of wtirtzite-type 
ZnO. This was confirmed consistent by a 
preliminary analysis in which a(Zn) was 
treated as a parameter and determined to be 
3.252 A. 

According to our assumption (iii), K(R, 
Fe) or K(R, Ga) should be identical irrespec- 

3.6 - 
MgbO.11) 

Mnb0.04) 

Fe 

co 

cut-007) 

Zn(-0.05) 

3.2 - 

r(R) ( a) 

FIG. 4. The lattice constant a of RGaM’O,, as a 
function of the Shannon-Prewitt radii of R3+. Points 
are the experimental data (1) and fine lines are calcu- 
lated by Eq. (6) and parameters in Table II. Values for 
Mg, Mn, Cu, and Zn compounds are shifted vertically 
by the amount indicated in parentheses in the figure, to 
avoid confusion. 
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TABLE III 

K(R, M)IK(Zn) AND a(R, M) FOR THE (1, m) Zn COMFQUNDS 

K(R, M)/K(Zn) 4R, Ml (A) Region of m used 

Fe Ga In Fe Ga In Fe Ga In 

Yb 2.78 2.31 3.494 3.486 l-3 l-3 
(2.67) (2.44) (3.501)” (3.479) 

LU 2.65 2.53 3.477 3.457 l-3 l-5 
(2.67) (2.44) (3.479) (3.455) 

In 2.69 4.66 2.10 3.356 3.311 3.507 l-10 l-7 3-9, 11 
(2.67) (3.353) (3.317) 

SC 1.91 3.311 2-7 

a Values in parenteheses are calculated from Table IV. 

tive of the rare-earth element. In the case of 
Fe compounds, this was proved except for 
R = SC. For M = Ga, K(In, Ga) is too 
large compared with those for Yb or Lu. 
Furthermore, the change of a in ScGaO, 
(ZnO), is not monotonous, though the 
amount is not so large. We ignore these 
cases in the following analysis and set K(R, 
Fe)lK(Zn) = 2.71 and K(R, Ga)lK(Zn) = 
2.42, the average value for Yb, Lu and In 
compounds in the former and for Yb and Lu 
compounds in the latter. 

We determined five parameters, K(Fe), 
K(Ga), K(Co), K(Cu), and K(Zn) from six 
K(M, M’) plus two K(R, M), by least- 
squares fit. Then, K(M’ = Fe) and K(Mg) 
were also determined from K(Ga, Fe) and 
K(Ga, Mg). (See Section 4.5.) The results 
are tabulated in Table IV. K(M, M’) and 
K(R, M) calculated from these values are 
compared with those determined from the 
experiments directly and shown in Tables II 
and III. Agreement seems rather good. a(M) 
and a(M’) were calculated from K(M) and 
K(M’) determined above and a(Zn) = 3.250 
A. They are also tabulated in Table IV. 

3. Consideration of c 

Because triangular nets of atoms stack 
along the c axis, the lattice constant c is a 

sum of the contributions of the U block and 
the T layers. According to assumption (iii), 
the former part, c(U), can be estimated by 
Eq. (3): 

c(U) = 22/Q-(R) + P-(O)>~ - a2/3. (10) 

By a subtraction of this quantity from c, the 
contribution of the T layers is deduced. Of 
course, number of the U block in a unit cell 

Yb 
Lu 

3.3 

In 

3.2 

I I 

0 0.5 1.0 
l/m 

FIG. 5. The lattice constant a of RFeO,(ZnO),, as a 
function of l/m. Points designate the experimental data 
(I) and fine lines are calculated by Eq. (9) and parame- 
ters in Table III. 
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FIG. 6. The lattice constant a of RGaO,(ZnO),, as a 
function of l/m. Points designate the experimental data 
(1) and fine lines are calculated by Eq. (9) and parame- 
ters in Table III. 

should be taken into account in the deduc- 
tion. (See Fig. 2.) In the case of the (1, 1) 
compounds, c/3 - c(U) is the contribution 
of double T layers. The average distance of 
the neighboring oxygen layers in the stack- 
ing of the T layers, c(T), is one-third of this 
quantity: 

c(T) = (c/3 - c(U))/3. (11) 

As was already pointed out, c decreases 
with increasing a in a series of compounds 
with the same M and M’ but different R. To 

make comparison between the compounds 
with different M or M’, it should be better 
to normalize a by a(M, M’) and c(T) by the 
value at a = a(M, M’). Figure 7 shows such 
a plot. As is seen, all the experimental data 
lies on a straight line, regardless of M or M’, 
with the slope of - 1.42, 

C 

dM, M’) 
=l-1.42. 

(12) 

except at the larger end of a in some series. 
In the case of Ga-Mn compounds, a has 
a tendency to saturate, whereas c does in 
Ga-Co, Fe-Fe, Fe-Zn, Fe-Co, Ga-Cu, 
and Fe-Cu compounds. The limit of ulu(M, 
M’) for the linear relation between a and c 
is smaller for Fe compounds than for Ga, 
whereas that of c seems smaller for Ga com- 
pounds. 

The normalization factors c(M, M’), or 
c(T; M, M’) at a = u(M, M’), are tabulated 
in Table V. Differences between M = Fe 
and Ga are also shown in the table. Once 
more, the Fe-Fe compound is an exception. 

For the compounds of m larger than 1, 
such a plot is not possible because experi- 
mental data for the compound with large 
m are not available except for M’ = Zn. 
Moreover, as is seen in Figs. 5 and 6, as- 
sumptions (i) and (ii) are not good for larger 
m and R’s of large ionic radius. Neverthe- 
less, qualitative characteristics can be de- 
duced mainly from In and Lu compounds. 
Figure 8 is the m-dependence of c(T) for 

TABLE IV 

K(M)/K(R),K(M')/K(R),u(M),AND U(M'),ESTIMATED FROM THE DATAIN TABLES HAND III 

M K(MYfW) a(M) (4 M’ K(M’)/K(R) 4M’) @i) 

Fe 0.149 3.219 Mg 0.716 3.285 
Ga 0.051 2.222 Fe 0.436 3.370 

co 0.397 3.254 
cu 0.468 3.425 
Zn 0.430 3.250 
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FIG. 7. The normalized dimension of the T layer of (1,l) compounds along the c axis, c(T), as a function 
of a normalized by a(M, M’). Points designated experimental data (I) and fine lines are guides for the 
eyes. The normalization factors, c(M, M’), are tabulated in Table V. 

both series of M = Fe or Ga and M’ = Zn. m. Fortunately, this ambiguity does not 
Though lack of sufficient number of data make so much trouble in the estimation of 
restricts quantitative discussion on the de- c(T), since a = a(M, mZn) in these com- 
pendence of c on a, negative slope (see Fig. pounds. Here, a(M, mZn) is the normaliza- 
7) seems to become steeper with increasing tion factor for a of the (1, m) compounds 

TABLE V 

c(M, M'), NORMALIZATION FACTORS FOR THE c(T) OF (1, 1) COMPOUNDS, IN (A) 

Mg 
Mn 
Fe 
co 
cu 
Zn 

Fe 

2.203 
2.292 
2.275 
2.081 
2.271 

Ga 

2.234 
2.262 
2.284 
2.340 
2.121 
2.346 

(Fe-Ga) 

-0.059 
0.009 

-0.065 
-0.040 
-0.075 
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which was calculated from K(M), K(Zn), 
a(M), and a(Zn), tabulated in Table IV, as 

~(44, mZn) 
= K(M)a(M) + mK(Zn)a(Zn) 

K(M) + mK(Zn) * (13) 

In Fig. 8, fine lines are those similar to 
Eq. (91, 

c(T; A4 mZn) 
= C(M)c(M) + mC(Zn)c(Zn) 

C(M) + mC(Zn) ’ (14) 

with c(Zn) = 2.603 A, c(Fe) = 2.071 A, 
c(Ga) = 2.233 A, C(Fe)lC(Zn) = 1.72 and 
C(Ga)lC(Zn) = 2.94. It is to be noted that 
c(Zn) = 2,603 A was assumed as one-half 
of the lattice constant c of wurtzite, after the 
confirmation of the consistency. 

4. Discussion 

4.1. On the Evaluation of 
Experimental Data 

The main problem of the experimental 
data is supposed to arise from the specimen. 
In general, the stoichiometry plays an im- 
portant role in determining the physical 
properties of RFe,O,. They are Berthollides 
existing in the region extending mainly to 
the oxygen-deficient side in the phase di- 
agram. 

A few reports have been made on the lat- 
tice constants of the same compounds with 
different oxygen content. See Table VI. The 
lattice constants of YFe204+, do not depend 
on x so much in the region 0.00 > x > 
- 0.09. On the other hand, a of YbFe,O,+. 
decreases by 0.005 A or 0.15% with an in- 
crease of x by about 0.04. In some cases, 
much larger differences, up to about 1% for 
LuGaMg04, e.g., were reported for the 
same compound synthesized at different 
laboratories. Such a difference might be at- 
tributed to the different conditions of reac- 
tions in the synthesis. 

(1, 1) compounds of Fe and Mg can be 
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FIG. 8. Normalization factor of c(T) of (1, m) Zn 
compounds, c(T; M, mZn), for M = Fe and M = Ga. 
Points designate the experimental data and fine lines 
are calculated by Eq. (14). 

considered to give another example. Lattice 
constants from ErFeMgO, to LuFeMgO, 
are tabulated in Table VII. The values in 
parentheses are those estimated from other 
compounds by Eqs. (2), (IO), and (12) using 
parameter values in Tables IV and V. Differ- 
ences between the measured and the esti- 
mated values of Yb and Lu compounds are 
not so large. Both a and c of Er and Tm 
compounds are, however, too large to be 
accounted for by the linear extrapolation 
from other compounds. Note that both a 
and c are larger in Er and Tm compounds 
than in Yb and Lu compounds, in contrast 
to the common feature, as shown in Fig. 7. 
In order to synthesize Fe-Mg compound 
from R,O,, Fe,Oj, and MgO powders in air 
or 0, gas, we have to heat the mixture at 
much higher temperatures than those for 
other compounds. We cannot neglect the 
possibility of introduction of Fe*+ ions or 
nonstoichiometry in the Fe-Mg compound 
(IO). 
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TABLE VI 

DEPENDENCE OF LATTICE CONSTANTS ON STOICHIOMETRY 

X a (A) c (A) Reference 

0.00 3.513 24.78 (5) 
- 0.095 3.513 24.76 
-0.027 3.4621(4) 25.126(6) (6) 
- 0.003 3.4596 25.117 
+0.015 3.4570 25.121 

4.2. On the Dimension of the U Block: discussed in the next subsection.) c(U), too, 
Rigid-Sphere Approximation and the does not show good coincidence. Depen- 
Site Preference dence of this quantity on r(R) is reversed. 

Close packing of spherical ions is a widely 
accepted model of ionic crystals, though the 
limitations are also discussed. Prewitt ar- 
gued that ions should be considered as com- 
posed of small relatively hard cores sepa- 
rated by the regions with much lower 
electron density of about 0.4 A (II). Atomic 
compressibility is accomodated in the latter 
part. For the discussion of a in the present 
report, the rigid-sphere approximation was 
used to estimate the size of the coordination 
octahedron of R in the free state, i.e., with- 
out “external” stress. “Rigidity” is not nec- 
essary there. Systematic dependence of the 
lattice constants on R seems to show that 
the estimated a(R), and the assumption of 
identical K(R) might not be so bad for rare 
earths and Y. As for c(U), however, the 
assumption plays an essential role. 

It is interesting to note that the distance 
of 0 in the different c planes in a U block is 
almost identical for all compounds, -2.87 
A. If we set this value, c(U) can be calcu- 
lated from experimentally determined a by 

c(U) = v2.872 - a213. (15) 

As is shown in the table, Eq. (15) gives a 
better estimate of c(U) than that of the rigid- 
sphere approximation. 

The validity of the rigid-sphere approxi- 
mation can be examined for the compounds 
for which atomic positions have been deter- 
mined. Reported atomic distances between 
R and coordinating 0 are compared with the 
sum of the ionic radii in Table VIII. c(U) 
and the distance of oxygen in the different 
c planes of the U block are also tabulated. 
Measured R-O distances coincide with the 
sum of the ionic radii in In compounds, but 
the experimental value becomes smaller 
with increasing ionic radius, up to about 1% 
in YFe,O,. (The case of Eu,,,Yb,,SFe,O, is 

If we adopt Eq. (15) to all the compounds, 
parameters tabulated in Table V, c(T), etc., 
change. The difference between c(Fe, M’) 
and c(Ga, M’) for the same M’, the fourth 
column, distributes between - 0.040 and 
-0.049 A except M’ = Fe. The arguments 
in Section 3, however, need not be changed 
qualitatively. The largest change in the pa- 
rameter values is for the slope of the plot in 
Fig. 7 and Eq. (12): from - 1.42 to -0.985. 

Another point to be made here is the loca- 
tion of In and SC. Recently, crystal chemical 
study of this series of compounds was ex- 
tended to In,-,Fe, +XO3 * (ZnO), and In, --x 
Ga,+.O, . (ZnO),. It was disclosed that the 
region of this type of compound extends not 
only to the negative side of x (17, 18) but 
also to the positive side when m is suffi- 
ciently large (19). In and Fe or Ga can inter- 
change their location not only in the T layers 
but also in the U blocks. In the case of 
In-Al-Zn system at 135o”C, no stoichio- 
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TABLE VII 

LATTICE CONSTANTS OF (1, ~)COMPOUNDS 
OF Fe AND Mg 

R a (& c (4 Reference 

Er 3.521 
(3.4SO)O 

Tm 3.503 
(3.433) 

Yb 3.429 
3.425 
3.422 

(3.418) 
LU 3.428 

3.415 
(3.405) 

25.69 (8) 
(24.74) 
25.55 (8) 

(24.84) 
25.16 (8) 
25.11 (7) 
25.16 (9) 

(24.93) 
25.31 (8) 
25.25 (7) 

(25.00) 

a Values in parentheses are calculated from Tables 
IV and V, and Eqs. (2), (lo), and (12). 

metric compound but only with negative x 
exists for 2 < m < 6 (20). It is natural to 
consider that the site preference of In3+ is 
not complete even for x = 0, nominally stoi- 
chiometric compound. This will partly ex- 
plain the deviation of the In-Mn compounds 
in Figs. 3 and 4. 

As for Sc3 + , a of ScGaM’O, (M’ = Mg, 
Cu, or Zn) corresponds to r(R) = 0.76-0.77 

A on the curves in Fig. 4. This is much larger, 
than the Shannon-Prewitt radius of Sc3+ co- 
ordinated by six O*- ,0.730 A. Since the ionic 
radius of M and M’ is still smaller (Ga3+: 
0.620 A; Mg*+: 0.72OA; Cu*+: 0.73 A; Zn*+: 
0.745 A) except Zn*+, substitution of SC in 
the U layer by M or M’ will result in the de- 
crease, instead of increase as observed, of a. 
Deviation of the lattice constants in the SC 
compounds might not be explained by the im- 
perfect preference of SC in the U layer. 
Chemical consideration, too, does not sup- 
port the location of Sc3+ ions in the T layer, 
akin to tetrahedrally coordinated site (see be- 
low). We have no idea at present to account 
for the deviation in this case. 

4.3. On the “Elastic” 
(Linear) Approximation 

Consideration of the strains in the bond 
length, resulting from the constraints to 
form a crystal, is not seldom. For example, 
Brown discussed recently the relation be- 
tween superconducting transition tempera- 
ture and the charge transfer between Cu 
atoms induced by the change of the bond 
length in Ba,YCu,O, (21). He concluded 
that there can be residual internal strains, 

TABLE VIII 

COMPARISON BETWEEN THE EXPERIMETALAND CALCULATED ATOMIC DISTANCES INTHE U BLOCK 

Compound 

Atomic distance, 
R-O 

Exp. Calc. (l)O Exp. 

c(U) 

Calc. (1) Calc. (2)* O-O’ Reference 

InAlCuO, 2.189 2.192 2.140 2.152 2.142 2.87 (1.2) 
InFet .7&.2504 2.188 2.192 2.145 2.162 2.145 2.870 (1.3 
YbFe20d 2.241 2.258 2.046 2.116 2.063 2.856 (13) 
Euo.5YbdQA 2.268 2.304 2.090 2.243 2.046 2.901 (14) 

(2.275) (2.121) 
YFe20, 2.269 2.292 2.030 2.128 2.029 2.870 (15) 
LuFe,O, 2.237 2.248 2.059 2.105 2.071 2.861 (16) 
LuFeCoO, 2.230 2.248 2.075 2.153 2.084 2.865 (16) 

a Calculation on the rigid sphere model of the anions and cations. Values for Eu,,,Yb,,,Fe204 are the arithmetic 
average of the cases of R = Eu and R = Yb and those for r(R) = 0.875 A (in parentheses). 

b Calculation on the assumption that O-O distance within the U block is 2.87 A, using observed a. 
c Atomic distance between oxygen ions in the neighboring c planes within a U block. 
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stretched Ba-0 and compressed Cu-0, that 
are not relaxed by charge transfer. In such 
cases, a linear approximation with fixed pa- 
rameter values will not work. Figures 3-6 
show several examples in the present analy- 
sis. Here, we add two more examples of 
inapplicability, in order to know the region 
where the “elastic” or the extended Veg- 
ard’s model is valid. 

The first example is Eu,,,Yb,,SFe 04. a of 
this compound was reported 3.486 x , which 
corresponds to r(R) = 0.875 A in Fig. 3 (24). 
This value should be compared with 0.904 
A, the average of Eu3+ and Yb3+. On the 
present assumptions, a(R) for mixed R ele- 
ments should be the weighted mean, since 
K(R) is identical: ordinary Vegard’s law 
should be fulfilled here. Note that a(R) can 
be considered as a linear function of r(R) in 
this region. In contrast to the Eu-Yb case, 
linear interpolation of r(R) gives reasonable 
results in the case of the elements with a 
smaller difference in the ionic radius, e.g., 
In-Lu or Y-Dy (7). They were shown in 
Fig. 3. It seems reasonable that the small 
difference guarantees linear interpolation. 

The second example is the case of M’ = 
Mn. In this case, the value of K as well 
as the difference between K(Fe, Mn) and 
K(Ga, Mn) (Table II) is much larger than 
that in the other compounds. On the other 
hand, differences in a(M, Mn) and c(M, Mn) 
are normal. Though a and c themselves can 
be accounted for by the present model, the 
value of parameter K should not be consid- 
ered constant for changing M. The case of 
M = Ga seems similar. Both K and a in 
Table IV are too small to be realized, sug- 
gesting that the validity of the values is 
limited. 

4.4. On the Dependence of c on a 

Let us note first that c(T) is not the dimen- 
sion of one T layer along the c axis but 
the average distance between oxygen layers 
other than in the U block. Since c(T) in- 
creases with increasing m and tends to that 

of wiirtzite, and since the normalized c(T) 
in the (1, 1) compound is not dependent on 
the transition element but only on the nor- 
malized a, it seems plausible to assume that 
the increase of c(T) for smaller a is mainly 
due to the shift of cation and anion layers 
composing one T layer, along the c axis. 
Two triangular nets of M + M’ and 0 do lie 
on the same c plane only if that is forced to 
by the symmetry of the crystal, i.e., in the 
T layer just at the center of two U blocks 
which appears when n + m is odd. In wtirtz- 
ite, of course, they are on the different c 
plane making the coordination polyhedron 
of M’ a tetrahedron, rather than the trigonal 
bipyramid in the present crystal. It is natural 
that the anion-anion distance decreases 
along the c axis, whereas it increases within 
the c plane, when cations want to locate at 
the center of the anion triangles. The com- 
mon feature shown in Fig. 7 suggests the 
common nature of the coupling of cations 
and anions. Figure 8 and Eq. (14) indicate 
the affinity between the tetrahedral and trig- 
onal bipyramidal coordination. 

In this context, three points are to be 
made. 

(1) Synthesis of (1, m) compound is much 
harder for even m compared to odd, when 
m becomes large. This can be either the 
elongation of time for the solid reaction or 
the instability of the compound. At any rate, 
cohesive energy of (m = even) compounds 
decreases for increasing m faster than that of 
(m = odd) compounds. As is stated above, 
there is a T layer composed of M + M’ and 
0 nets on the same c plane when m is even. 
We can expect that the lower limit of a is 
larger in such a T layer compared to other 
T’s. On the other hand, large m makes a 
smaller usually. This conflict will destabilize 
the crystal. 

(2) Lack of the linear relation between 
c(T) and a at the large-u end of the (M, 
M’) compounds (Fig. 7) can be naturally 
explained as a phenomenon when M + M’ 
and 0 nets lie in nearly the same c plane. In 
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such a case, further decrease of c will not 
result by the increase of a. 

(3) The thermal-expansion coefficient of 
LuFe,O, along the c axis is negative above 
room temperature, whereas that of YFe,O, 
does not show any anomaly (22). When the 
negative relation exists between c and a, 
thermal expansion along the a axis will 
cause shrinkage along the c. This is the case 
of LuFe,O,. YFe20, deviates from the prin- 
cipal line in Fig. 7 and no anomaly can be 
expected. 

4.5. On the Anomaly of the 
Fe-Fe Compound 

It is evident in the tables that the differ- 
ences of all parameters are anomalous be- 
tween Fe-Fe and Ga-Fe compounds. This 
should be due to the peculiarity of the elec- 
tronic state in the Fe-Fe compound, in which 
the average valence of Fe is 2.5 + . There are 
two ionic states of Fe, though not strictly 2 + 
and 3 + , in a crystallographically equivalent 
site. Charge fluctuation between them, the 
frequency of which is about 10 MHz at room 
temperature, was observed in Mossbauer 
spectrum directly (22). At the same time, the 
isomer shift of the higher valence state in 
RFe,O, deviates from those in the com- 
pounds with other M’ (22). Rather low elec- 
trical resistivity, of the order of 1 0 . cm at 
room temperature, is also attributed to the 
charge fluctuation. In the case of stoichio- 
metric YFe,04 or ErFe,O,, a Verwey-type 
tansition was discovered (23,24). 

We conclude that not the Ga-Fe but the 
Fe-Fe compound is anomalous in the pres- 
ent analysis of lattice constants. This is an- 
other evidence of the effect of the charge 
fluctuation, or the existence of the charge 
density waves, in this crystal. Below the 
Verwey transition, where charge fluctuation 
stops, a increases (25). Charge flucuation or 
the transfer of electrons, which takes place 
mainly within a T layer, is expected to favor 
shorter a, and forces c to expand. 
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